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Abstract. The generalizedk-constrained KP hierarchy is shown to correspond to a so-called
pseudo-reduction of the two-dimensional Toda lattice hierarchy, described in a free-fermion
approach which is adapted to the case of two singularities in the spectral parameter range.
Wronskian solutions are discussed and, in particular, soliton solutions are recovered through a
pk + c/p = qk + c/q reduction of the Toda solitons.

1. Introduction

It has become widely accepted that imposing so-called symmetry constraints on the KP
hierarchy is one of the most interesting methods for obtaining integrable(1 + 1)-dimensional
evolution equations [1–5]. Several approaches have been developed for the implementation
of this procedure: one can either impose a constraint on the linear system underlying the KP
hierarchy [3, 4, 6], one can impose a ‘symmetry constraint’ on the level of the actual solutions
of the KP evolution equations [1, 2] or on the level of the tau functions giving rise to solutions
[7, 8], or one might give a geometric interpretation of such constraints [9]. While all of these
approaches have their own merits, we found that imposing a symmetry constraint on the tau
functions themselves has two immediate advantages. First of all, one recovers the bilinear
equations and determinant-type solutions for the reduced equations with remarkable ease, but
it also turns out that this approach allows for an interesting and straightforward generalization
of the usual constraints [8].

This generalization proceeds as follows. It is a well known fact that the entire KP hierarchy
can be encoded in the following bilinear expression [10, 11]:

Res
λ=∞

[
τ

(
x− ε

(
1

λ

))
τ

(
x′ + ε

(
1

λ

))
eξ(x−x

′,λ)
]
= 0 (1)

making use of a tau functionτ(x) which depends on an infinite sequence of time variables
x = (x1 = x, x2, x3, . . .); the ‘shift’ ε(λ−1) stands for(λ−1, 1

2λ
−2, 1

3λ
−3, . . .). The argument

ξ(x, λ) of the exponential function appearing in this expression represents the formal series
ξ(x, λ) = ∑∞

n=1 xnλ
n. The (2 + 1)-dimensional nonlinear partial differential equations

(NLPDEs) making up the KP hierarchy can be recovered from this expression as successive
coefficients in a careful expansion in terms ofx− x′.

The reduction procedure we use here to obtain(1 + 1)-dimensional integrable evolution
equations from the KP hierarchy (and which we refer to as the generalizedk-constraint),
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consists of imposing the following condition [8] on the KP tau functions (and hence on the
bilinear expression (1)):

τxk = τ�(8,8∗)− cxτ (2)

(for an arbitrary but fixed constantc). The functions8 and8∗ are eigenfunctions and adjoint
eigenfunctions for the KP hierarchy, meaning that they satisfy the KP (adjoint) linear problem
[12, 13] (∀ n > 2):

pn(−∂̃)8 = 8pn−1(−∂̃)(logτ)x pn(∂̃)8
∗ = 8∗pn−1(∂̃)(logτ)x (3)

wherepn(±∂̃) denote the Schur polynomials,
∑∞

n=0pn(x)λ
n ≡ expξ(x, λ), expressed in

the variables∂̃ = (∂x,
1
2∂x2,

1
3∂x3, . . .). The function�(8,8∗) represents the so-called

eigenfunction potential associated to the pair(8,8∗), defined by the total differential [14]

d� ≡ 88∗ dx + (8x8
∗ −88∗x) dx2 + · · · . (4)

In [8] it is shown that the constraint (2) can be interpreted as a symmetry constraint as it
identifies two sets of symmetries for the KP hierarchy: elements∂xk andx of the Heisenberg
algebra, on the one hand, and the product ofτ and the eigenfunction potential�(8,8∗), on
the other hand. It is also shown that the constraint (2) gives rise to an auxiliary set of bilinear
equations forτ and that it has an interpretation on the level of the usual pseudo-differential
construction of the KP hierarchy as well. If one constructs [11] the KP hierarchy starting
from a pseudo-differential Lax operatorL = ∂ + u2∂

−1 + u3∂
−2 + · · · , using the definitions

∂∂−1 = ∂−1∂ = 1 and∂f (x) = f (x)∂ + fx(x), with coefficientsun expressible in terms
of the tau functions (u2 = ∂2

x logτ, u3 = 1/2(∂x2 − ∂2
x )∂x logτ, . . .) it can be shown that the

symmetry constraint (2) is equivalent to the condition

Lk + cL−1 = (Lk)+ +8∂−18∗ (5)

(the operation(P )+ restricting a pseudo-differential operatorP to the part with non-negative
powers of∂).

In this paper, we provide an algebraic description of this particular type of reduction, as
an alternative to the above pseudo-differential approach. A key observation is that the soliton
solutions of the reduced systems can be obtained from the usual KP solitons by so-called
‘pseudo-reductions’. The term was coined by Hirota when studying reductions of the KP or
mKP hierarchies which result in polynomial dispersion relations for the soliton solutions (as
opposed to the usual monomial ones). In particular, the interest in a generalizedk-constraint
was triggered by the fact that, at the first levelk = 1, it yields a system closely related to the
Broer–Kaup system which was studied by Hirota [15] in terms of pseudo-reductions as far
back as 1985 (in fact, it was only shown much later that the Broer–Kaup system actually is
a pseudo-reduction of the mKP hierarchy [16]). For our present purposes we shall need an
algebraic description of the two-dimensional (2D) Toda lattice hierarchy, in terms of (charged)
free-fermion operators. In this particular framework it will be explained how the concept of a
pseudo-reduction immediately leads to constraints of type (2) on the KP evolutions.

2. The two-dimensional Toda lattice hierarchy

The basic fermionic description of the 2D Toda lattice runs largely parallel to that of the
KP hierarchy, the main difference being however the introduction of a new set of independent
variables, associated to a second (essential) singularity in the time evolutions. For an exhaustive
overview of these methods the interested reader is referred to [10, 17] (or [18, 19] for a
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related approach). The approach is formulated in terms of (charged) free-fermion creation
and annihilation operatorsψi, ψ∗j (for i, j ∈ Z + 1

2) satisfying the anti-commutation relations:

[ψi, ψ
∗
j ]+ := δi+j,0 and [ψi, ψj ]+ = [ψ∗i , ψ

∗
j ]+ = 0. (6)

As usual, in the standard Fock representation of this algebra (and its dual representation),
cyclic vectors|vac〉 (and〈vac|) are introduced:

ψi |vac〉 = ψ∗i |vac〉 = 0 for i > 0

〈vac|ψi = 〈vac|ψ∗i = 0 for i < 0.
(7)

Expectation values are defined using the fundamental pairing〈vac|1|vac〉 = 1. In terms of
the basic fermion operators, formal operators depending on some ‘spectral’ parameters are
defined as

ψ(λ) ≡
∑
j∈Z+ 1

2

ψj λ
−j−1/2 ψ∗(λ) ≡

∑
j∈Z+ 1

2

ψ∗j λ
−j−1/2. (8)

As mentioned earlier, in order to describe the 2D Toda lattice we have to introduce a time
evolution for these operators which exhibits singularities at bothλ = ∞ and 0, in contrast
to the ordinary KP hierarchy where there is only one singularity (atλ = ∞). First, we
must defineHn ≡

∑
j∈Z+ 1

2
ψ−jψ∗j+n for all integersn 6= 0. Due to the relations (7) one has

the important propertiesHn>0|vac〉 = 0 and〈vac|Hn<0 = 0, in addition to the commutation
relation: [Hn,Hm] = nδn+m,0. Now we can define HamiltoniansH +(x) andH−(y) associated
to both singular pointsλ = ∞ and 0 (y = (y1 = y, y2, y3, . . .)):

H +(x) ≡
∞∑
n=1

xn Hn H−(y) ≡
∞∑
n=1

yn H−n (9)

which have the following commutation property:

eH
+(x) eH

−(y) = eH
−(y) eH

+(x)e
∑∞

n=1 n xnyn . (10)

In terms of these Hamiltonians, the time evolutions of the operatorsψ(λ) andψ∗(λ) are given
through the following automorphisms [10]:

ψ(λ)→ λn eH
+(x) eH

−(y)ψ(λ) e−H
−(y) e−H

+(x) = λn eξ(x,λ)+ξ(y,λ
−1)ψ(λ) (11)

ψ∗(λ)→ λ−n eH
+(x) eH

−(y)ψ∗(λ) e−H
−(y) e−H

+(x) = λ−n e−ξ(x,λ)−ξ(y,λ
−1)ψ∗(λ). (12)

Tau functionsτn(x,y) are introduced as vacuum expectation values for certain elements
g = exp(

∑
i,j aij ψ(pi) ψ

∗(qj ) + a) of (a suitable completionGL(∞) of) the groupGL(∞)
[10, 20]. Denoting the time evolution of such an element byg(n;x,y) we have

τn(x,y) ≡ 〈vac|g(n;x,y)|vac〉. (13)

These tau functions satisfy the general bilinear identity:

Res
λ=∞

[
λn−n

′
τn

(
x− ε

(
1

λ

)
,y

)
τn′

(
x′ + ε

(
1

λ

)
,y′
)

eξ(x−x
′,λ)+ξ(y−y′,λ−1)

]
+ Res
λ=0

[
λn−n

′
τn+1(x,y − ε(λ))τn′−1(x

′,y′ + ε(λ)) eξ(x−x
′,λ)+ξ(y−y′,λ−1)

] = 0.

(14)

The lowest-order members (i.e. inx) of the hierarchy encoded in this bilinear form are easily
found to be

DxDyτn · τn = 2[τ 2
n − τn−1τn+1] (15)

Dx2Dyτn · τn = 2Dxτn−1 · τn+1. (16)
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The first equation in this list is of course the Hirota bilinear form of the 2D Toda lattice [21]:

(θn)xy = e−θn+1 − 2e−θn + e−θn−1 for θn = log
τ 2
n

τn+1τn−1
(17)

(from now on, we shall denote the tau functionsτn(x,y) asτn). Note that takingy′ = y and
n′ = n in the bilinear identity (14) reduces it to the KP bilinear identity (1) forτ = τn(x,y),
where the typical ‘Toda-like’y variables are then to be regarded as mere parameters in genuine
KP tau functions. In the same way, considering the casey′ = y andn′ = n−1, one recovers the
modified KP bilinear identity [10] showing that the ratiosτn+1/τn andτn−1/τn are, respectively,
KP eigenfunctions and adjoint eigenfunctions associated to the tau functionτn.

The associated linear problem for the 2D Toda hierarchy can be derived in a similar fashion.
Let us define the functions

Vλ(n;x,y) = 〈1|ψ(λ) g(n;x,y)|vac〉 (18)

V ∗λ (n;x,y) = 〈−1|ψ∗(λ) g(n;x,y)|vac〉 (19)

for states〈1| = 〈vac|ψ∗1/2 and〈−1| = 〈vac|ψ1/2. They allow for the following representations
in terms of tau functions [10]:

Vλ(n;x,y) =
 τn(x− ε

(
1

λ

)
,y) if expanded aroundλ = ∞

τn+1(x,y − ε(λ)) if expanded aroundλ = 0
(20)

V ∗λ (n;x,y) =
 τn(x + ε

(
1

λ

)
,y) if expanded aroundλ = ∞

τn−1(x,y + ε(λ)) if expanded aroundλ = 0
(21)

and give rise to wavefunctions and adjoint wavefunctions for the Toda hierarchy:

ψλ(n;x,y) = Vλ(n;x,y) λneξ(x,λ)+ξ(y,λ−1)/τn(x,y) (22)

ψ∗λ (n;x,y) = V ∗λ (n;x,y) λ−ne−ξ(x,λ)−ξ(y,λ
−1)/τn(x,y). (23)

These wave and adjoint wavefunctions satisfy the Toda linear problem which can be obtained
under the form of ‘bilinear identities’ as well. More precisely, it is possible to derive two
different identities: the first one choosingλ,µ andp to lie in a neighbourhood of∞∑
s=λ,µ,p

Res
k=s

[
Vk(n;x,y) V ∗k (n;x− ε(1/p)− ε(1/λ)− ε(1/µ),y)

(k − p)(k − µ)(k − λ)
]
= 0 (24)

and the second one in the case whereλ,µ andp lie in the neighbourhood of 0,∑
s=λ,µ,p

Res
k=s

[
Vk(n;x,y) V ∗k (n + 3;x,y − ε(p)− ε(λ)− ε(µ))

(k − p)(k − µ)(k − λ)
]
= 0. (25)

When expressed in terms of wavefunctions and denotingψp(n;x,y) asφn(x,y), the identity
(24):

λφn

(
x− ε

(
1

λ

)
,y

)
ψλ(n;x,y) = µ

[
ψλ(n;x,y) φn

(
x− ε

(
1

µ

)
,y

)
−φn(x,y) ψλ

(
n;x− ε

(
1

µ

)
,y

)]
(26)

is recognized as a fundamental identity which holds for the eigenfunctions of the KP hierarchy
in general [22]. Note that the renamingψp(n;x,y) ↔ φn(x,y) in formula (26) is not a
completely innocent one: it stresses that the spectral parameterp is of no relevance in the
equation as it only appears as an internal parameter in some special solutions (i.e. in the
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wavefunctionsψp(n;x,y)). Moreover, upon inspection, the equation actually turns out to be
non-singular in the limitp→ 0: taking the consecutive limitsµ→∞, p→ 0 yields (due to
relations (20) and (22))

λ
τn+1

(
x− ε(1/λ),y)

τn
(
x− ε(1/λ),y) +

(
τn+1

τn

)
x

=
(
τn+1

τn

)
[logψλ(n;x,y)]x (27)

actually stating again that the ratioτn+1/τn satisfies the KP linear problem (3).
The second identity (25) can be expressed as

φn(x,y) ψλ(n + 1;x,y − ε(µ))− ψλ(n;x,y) φn+1(x,y − ε(µ))
+ψλ(n;x,y) φn+1(x,y − ε(λ)) = 0 (28)

which encodes the Toda linear equations for they variables. For example, taking the limit
µ→ 0 and shiftingn→ n− 1 in this identity, we obtain (at first order inλ) they evolution
of φn(x,y):

(φn)y = e−θn φn−1 (29)

with θn as in formula (17). On the other hand, if we express formula (27) completely in terms
of φn = ψλ(n;x,y), we find (once again on account of relations (20) (first equation) and (22))
a first-order linear equation for thex evolution of the eigenfunctionsφn:

(φn)x = vn φn + φn+1 for vn =
(

log
τn+1

τn

)
x

. (30)

Noticing the relation(θn)x = vn−1 − vn, it is easily verified that the system (29) and (30), is
the Lax pair for the 2D Toda lattice (17) [21, 23].

3. Pseudoreductions

In the present approach, reductions can be formulated as constraints on either the group
elementsg which are used to define tau functions, or on their generating algebra. Here we
adopt the former approach and impose the following condition ong ∈ GL(∞):(

1

c
Hk +H−1

)
g ≡ g

(
1

c
Hk +H−1

)
(31)

for somek > 0 and for a fixed constantc. The resulting constraint on the tau functions of the
Toda lattice is easily calculated. For this we need a special instance of formula (10) stating
that (k > 0): [

Hk, e
±H−(y)]

− = ±kyk e±H
−(y). (32)

Because of this formula and bearing in mind thatHk>0|vac〉 = 0, the constraint (31) implies
for τn = τ(n;x,y) that
1

c
(τn)xk =

1

c
〈vac|eH +(x)Hk eH

−(y)g e−H
−(y)|vac〉

= 1

c
〈vac|eH +(x) eH

−(y) g (Hk + kyk) e−H
−(y)|vac〉

−〈vac|eH +(x) eH
−(y)(H−1 g − g H−1) e−H

−(y)|vac〉
= −(τn)y1. (33)

Hence, the condition (31) on the group elements imposes the following pseudo-reduction on
the tau functions:

1

c
(τn)xk + (τn)y = 0 (34)
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(the term ‘pseudo’ is used to distinguish this type of reduction from the ordinary (KP)k-
reductions for which we have thatτxk = 0 impliesτx2k = τx3k = · · · = 0 [11]; for pseudo-
reductions there is no such implication and as such no ‘higher’-order time evolutions are
eliminated from the hierarchy).

The constraint (34) reduces the 2D Toda lattice (15) to an equation, defined solely in terms
of ‘KP time variables’:

DxDxkτn · τn = 2c[τn−1τn+1− τ 2
n ] ⇐⇒ (logτn)x,xk = qr − c (35)

upon introduction of the functionsq = √cτn+1/τn and r = √cτn−1/τn. If, from this
point on, we regard the ‘higher’-order time variablesyn>1 as mere parameters in the tau
functions—the above equation will act as a constraint on the remaining KP evolutions along
thex variables. Note that it was argued in the previous section that the functionsq andr as
defined above, are (respectively) eigenfunctions and adjoint eigenfunctions for the KP linear
problem. Consequently, referring to the defining property of an eigenfunction potential (4) we
can look upon the productqr in the above expression as thex derivative of the eigenfunction
potential�(q, r) associated withq andr. Expression (35) is then equivalent to

�(q, r) = (logτn)xk + cx + F(x,y) with F(x,y)x = 0. (36)

We shall now prove that this functionF(x,y) does not depend on the KP variablesx and
hence, when it comes to an interpretation in terms of the KP hierarchy, that it may be regarded
as a mere constant of integration to be included in the potential�(q, r). In that case we will
have shown that the pseudo-reduction (34) performed on the 2D Toda lattice is equivalent
to imposing a generalizedk-constraint on thex-evolutions for the tau functions and, for that
matter, on the entire KP hierarchy:

(τn)xk = τn�(q, r)− cxτn. (37)

The essential ingredient in the proof is a general property of eigenfunction potentials which
governs their behaviour under shifts of thex variables, i.e.

[�(8,8∗)]
(
x− ε

(
1

λ

))
−�(8,8∗) = −1

λ
88∗

(
x− ε

(
1

λ

))
(38)

(see [8, 22] or [24] for rather different proofs of this property).
Now, using the linear equation (29) for a wavefunctionψλ(n) = ψλ(n;x,y) expanded

aroundλ = ∞, we easily obtain that

(logψλ(n))y = e−θn
ψλ(n− 1)

ψλ(n)
= 1

λ

τn+1

τn

τn−1
(
x− ε(1/λ))

τn
(
x− ε(1/λ)) (39)

or, remembering the definitions ofq andr:

q r

(
x− ε

(
1

λ

))
= cλ(logψλ(n))y = c + cλ

(
log

τn
(
x− ε(1/λ))

τn

)
y

. (40)

Performing the pseudo-reduction (34) on this last equation yields

−1

λ
qr

(
x− ε

(
1

λ

))
=
[

logτn

(
x− ε

(
1

λ

))]
xk

− (logτn)xk −
c

λ
(41)

which, in view of formula (38), should be compared with the difference

[�(q, r)]

(
x− ε

(
1

λ

))
−�(q, r)
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calculated from equation (36). It then follows that

F

(
x− ε

(
1

λ

)
,y

)
= F(x,y) (42)

in other words, that it is indeed a constant with respect to thex evolutions.
The effect of the pseudo-reduction (34) on a wavefunctionψλ(n;x,y) (cf formulae (19)

and (22)) is easily calculated as well:(
1

c
∂xk + ∂y

)
ψλ(n;x,y) =

(
1

c
∂xk + ∂y

)
〈vac|eH +(x) eH

−(y) ψ(λ) ge−H
−(y)|vac〉

= 1

c

(
λk +

c

λ

)
ψλ(n;x,y) (43)

(the calculation runs along the same lines as (33)). Hence, they part (29) of the Lax pair for
the Toda lattice is changed accordingly:

(φn)xk − ηφn + c e−θnφn−1 = 0 (44)

for some spectral parameterη in what is now, together with (30), a Lax pair for the lattice
equation (35). However, if we wish to obtain a ‘Lax system’ for the constrained KP hierarchy,
we obviously need to derive a constraint on the KP linear problem which is expressed at a
single lattice site (and therefore is effectively independent ofn), instead of at two sites as is the
case in (44). As a matter of fact, such an equation is easily obtained by applying the operator
(∂x − vn) to equation (44),

(φn)x,xk − vn(φn)xk − η[(φn)x − vnφn] + c e−θnφn = 0. (45)

Furthermore, performing the pseudo-reduction (34) on the higher-order member of the Toda
lattice (16), we find

(logτn)x2,xk = c[(τn+1)xτn−1− τn+1(τn−1)x ]τ
−2
n (46)

which, together with equation (35), leads to the identification

c e−θn = (logτn)x,xk + c

vn = 1

2

(logτn)x2,xk + (logτn)2x,xk
(logτn)x,xk + c

.
(47)

Hence, equation (45) acts as a genuine auxiliary linear equation for the system (3) and thus
provides the Lax description of the constrained KP hierarchy.

To conclude, let us look at some particular solutions for the constrained KP equations.
Thinking of soliton solutions, the corresponding tau functions are typically obtained from
elements ofGL(∞) that are constructed through repeated application of the Bäcklund
transformation (p 6= q)

g→ (C +ψ(p)ψ∗(q)) g (48)

starting from some trivial (‘vacuum’) elementg = 1 [22]. Hence, if such a group element
is required to commute with the combination(1/c)Hk + H−1 as in (31), it is sufficient that
ψ(p)ψ∗(q) commutes with it. As we have (∀n integer)

[Hn,ψ(p)]− = pnψ(p) and [Hn,ψ
∗(q)]− = −qnψ∗(q) (49)

we find that this is the case iff

pk +
c

p
= qk +

c

q
(50)

which is an example of the pseudo-reductions we mentioned in the introduction and which
were studied by Hirota for the casek = 1.
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Alternatively, we might look at typical Wronskian determinant solutions, made up of
functions which satisfy the linear problem for a certain ‘vacuum’ tau function. In the case of
the Toda lattice we have the vacuumτn ≡ 1 (∀n) for which the linear system (29) and (30)
turns into

(ϕn)x = ϕn+1 r(ϕn)y = ϕn−1. (51)

It is well known that there are size-N Wronskian/Casorati determinant solutions for the 2D Toda
lattice (for arbitraryN ) [25, 26], defined in terms ofN different solutionsϕ(i)n , i = 1, . . . , N
to the system (51)

τn = det
[
ϕ
(i)
n+j−1

] = det
[
(ϕ(i)n )(j−1)x

]
i, j = 1, . . . , N. (52)

The pseudo-reduction reduces the linear system (51) to the corresponding ‘vacuum’ case
(θn = 0) of equation (44) (omitting the indexn, which has now become superfluous)

(ϕ)xk − ηϕ + c ∂−1
x (ϕ) = 0 (53)

where we ‘define’ an appropriate inverse of the∂x operator by its action on the exponential
functions which typically make up the solutionsϕ: ∂−1

x expξ(x, λ) ≡ λ−1 expξ(x, λ), i.e. in
accordance with the first condition in (51),(ϕn−1)x = ϕn, for vacuum Toda wavefunctions
λn expξ(x, λ)expξ(y, λ−1). Hence, the constrained KP hierarchy will have Wronskian
determinant solutions of type (52), expressed in terms of solutionsϕ(i) of the vacuum KP
linear systemϕ(i)xn = ϕ(i)nx complemented with the constraint (53) for spectral parametersηi .
The soliton solutions we discussed above are, of course, included in this class if we consider
ϕ(i) = expξ(x, pi) + expξ(x, qi) subject to condition (50). For completeness, we end by
remarking that the (adjoint) eigenfunctionsq = √c τn+1/τn (r = √c τn−1/τn) are also easily
recovered. It suffices to note that, due to formula (52),

τn+1 = det
[(
ϕ(i)

)
jx

]
i, j = 1, . . . , N (54)

whereas

τn−1 = det
[(
ϕ(i)

)
(j−2)x

]
i, j = 1, . . . , N (55)

with the understanding that the entries in its first column (i.e.j = 1) are to be interpreted as
∂−1
x (ϕ(i)), in the sense explained above. These solutions for the generalizedk-constrained KP

hierarchy were first introduced in [8].

4. Conclusions

In this paper we trace back the origin of the generalizedk-constrained KP hierarchy to a
reduction of the (full) Toda lattice hierarchy. The link we establish is rooted in an algebraic
(fermionic) description of the Toda hierarchy and as such provides an interesting contrast to
the usual pseudo-differential approach(es) to symmetry constraints. It should be emphasized
that when the generalizedk-constraint is viewed as a reduction of the Toda lattice (cf formulae
(31) and (34) or (50)), its limiting casec → 0 will give rise to a ‘standard’k-reduction on
the KP-part of the hierarchy, rather than to the ordinary (scalar)k-constraint which is obtained
from expressions (2) or (5) in casec = 0. Finally, we believe the present discussion to be
rewarding also, because of the ease with which the pseudo-reduction is described, on the level
of the equations, the linear systems or the solutions.



Algebraic description of generalizedk-constraints 2035

Acknowledgments

Both authors are affiliated to the Fund for Scientific Research (FWO), Flanders (Belgium):
RW as a post-doctoral fellow and IL as a research assistant. IL wishes to thank Professor J
Satsuma for hospitality and support during his stay at the University of Tokyo on the occasion
of which the present work was initiated. RW acknowledges the support of the FWO through
a mobility grant. The authors also wish to acknowledge financial support extended within the
framework of the ‘Interuniversitary Poles of Attraction Programme, contract no P4/08, Belgian
State’.

References

[1] Konopelchenko B and Strampp W 1992 New reductions of the Kadomtsev–Petviashvili and two-dimensional
Toda lattice hierarchiesJ. Math. Phys.333676–86

[2] Sidorenko J and Strampp W 1993 Multicomponent integrable reductions in the Kadomtsev–Petviashvili
hierarchyJ. Math. Phys.341429–46

[3] Cheng Y 1992 Constraints of the Kadomtsev–Petviashivili hierarchyJ. Math. Phys.333774–82
[4] Aratyn H, Nissimov E and Pacheva S 1997 Constrained KP hierarchies: additional symmetries, Darboux–
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